Generator Sinus
1. Tujuan
2 Alat dan Bahan
3 Dasar Teori
4 Prinsip Kerja
Generator Sinus
Merupakan alat untuk mengukur tegangan pada suatu circuit. Dalam menggunakannya kita memparalelkan voltmeter dengan rangkaian yang ingin diukur besar tegangannya. Jika tegangan berupa tegangan DC maka pengalinya di set pada bagian DC, dan jika AC maka diset pada bagian AC. Hasil pada layar akan dikali dengan pengalinya terlebih dahulu, maka akan muncul nilai tegangan pada rangkaian.
Spesifikasi
Kapasitor adalah komponen elektronika pasif yang dapat menyimpan muatan listrik dalam waktu sementara.
Cara menghitung nilai kapasitor :
1. Masukan 2 angka pertama langsung untuk nilai kapasitor.
2. Angka ke-3 berfungsi sebagai perpangkatan (10^n) nilai kapasitor.
3. Satuan kapasitor dalam piko farad.
4. Huruf terakhir menyatakan nilai toleransi dari kapasitor.
Daftar nilai toleransi kapasitor :
B = 0.10pF
C = 0.25pF
D = 0.5pF
E = 0.5%
F = 1%
G = 2%
H = 3%
J = 5%
K = 10%
M = 20%
Z = + 80% dan -20%
- Tegangan Zener – ini berhubungan dengan tegangan tembus terbalik. Ini berkisar dari 2.4V hingga 200V, tergantung pada dioda tertentu
- Arus (maksimum) – arus maksimum pada tegangan Zener terukur. Ini dapat berkisar dari 200uA hingga 200A
- Arus (minimum) - arus minimum yang diperlukan pada tegangan Zener agar dioda rusak. Ini biasanya antara 5mA dan 10mA
- Peringkat Daya - peringkat disipasi daya maksimum dioda, termasuk arus yang mengalir melalui dioda dan tegangan yang melintasinya. Nilai standar termasuk 400mW, 500mW, 1W, dan 5W. Dengan dioda yang dipasang di permukaan, nilai tipikalnya adalah 200mW, 350mW, 500mW, dan 1W
- Toleransi Tegangan – biasanya ± 5%
- Stabilitas Suhu – dioda paling stabil biasanya sekitar 5V
- Resistansi Zener – resistansi yang ditunjukkan oleh dioda
Kapasitor adalah komponen elektronika pasif yang dapat menyimpan muatan listrik dalam waktu sementara.
Cara menghitung nilai kapasitor :
1. Masukan 2 angka pertama langsung untuk nilai kapasitor.
2. Angka ke-3 berfungsi sebagai perpangkatan (10^n) nilai kapasitor.
3. Satuan kapasitor dalam piko farad.
4. Huruf terakhir menyatakan nilai toleransi dari kapasitor.
Daftar nilai toleransi kapasitor :
B = 0.10pF
C = 0.25pF
D = 0.5pF
E = 0.5%
F = 1%
G = 2%
H = 3%
J = 5%
K = 10%
M = 20%
Z = + 80% dan -20%
- Tegangan Zener – ini berhubungan dengan tegangan tembus terbalik. Ini berkisar dari 2.4V hingga 200V, tergantung pada dioda tertentu
- Arus (maksimum) – arus maksimum pada tegangan Zener terukur. Ini dapat berkisar dari 200uA hingga 200A
- Arus (minimum) - arus minimum yang diperlukan pada tegangan Zener agar dioda rusak. Ini biasanya antara 5mA dan 10mA
- Peringkat Daya - peringkat disipasi daya maksimum dioda, termasuk arus yang mengalir melalui dioda dan tegangan yang melintasinya. Nilai standar termasuk 400mW, 500mW, 1W, dan 5W. Dengan dioda yang dipasang di permukaan, nilai tipikalnya adalah 200mW, 350mW, 500mW, dan 1W
- Toleransi Tegangan – biasanya ± 5%
- Stabilitas Suhu – dioda paling stabil biasanya sekitar 5V
- Resistansi Zener – resistansi yang ditunjukkan oleh dioda
Zener Breakdown
Zener Breakdown terjadi dengan tegangan bias balik antara 2V dan 8V. Intensitas medan listrik cukup untuk menerapkan gaya pada elektron valensi, memisahkannya dari inti – bahkan pada tegangan rendah ini. Proses ini membentuk pasangan elektron-hole yang bergerak, sehingga meningkatkan aliran arus.
Zener Breakdown biasanya terjadi untuk dioda yang didoping tinggi dengan medan listrik besar dan tegangan tembus rendah. Lebih banyak energi diperoleh oleh elektron valensi dengan meningkatnya suhu, oleh karena itu membutuhkan lebih sedikit tegangan keluar. Ini juga berarti bahwa tegangan tembus Zener berkurang bersamaan dengan suhu.
Avalanche Breakdown
Breakdown tegangan juga terjadi pada kondisi reverse bias, minimal 8V, untuk dioda light-doped yang memiliki tegangan tembus yang besar. Elektron yang mengalir melalui dioda bertabrakan dengan elektron dalam ikatan kovalen, mengganggunya. Kecepatan elektron meningkat seiring dengan peningkatan tegangan, yang berarti bahwa ikatan kovalen dapat lebih mudah diputus. Perlu juga dicatat bahwa tegangan tembus longsoran naik bersamaan dengan suhu.
Spesifikasi:
Respons karakteristik kurva I-O:
Potensiometer / Potmeter terdiri dari kawat resistif panjang L yang terbuat dari magnum atau dengan konstantan dan baterai yang dikenal EMF V. Tegangan ini disebut sebagai tegangan sel driver (driver cell voltage).
Hubungkan kedua ujung kabel resistif L ke terminal baterai seperti yang ditunjukkan di bawah ini; mari kita asumsikan ini adalah pengaturan rangkaian primer. Satu terminal sel lain (yang EMF E-nya harus diukur) berada di salah satu ujung rangkaian primer dan ujung terminal sel lainnya terhubung ke titik mana pun pada kawat resistif melalui galvanometer G.
Sekarang, mari kita asumsikan susunan ini adalah sirkuit sekunder. Susunan potmeter seperti yang ditunjukkan di bawah ini.
Prinsip kerja dasar ini didasarkan pada fakta bahwa jatuhnya potensi di setiap bagian kawat berbanding lurus dengan panjang kawat, asalkan kawat memiliki area penampang yang seragam dan arus konstan mengalir melalui itu.
“Ketika tidak ada perbedaan potensial antara dua node ada arus listrik akan mengalir"
Sekarang kawat potmeter sebenarnya adalah kawat dengan resistivitas tinggi (ῥ) dengan luas penampang seragam A. Dengan demikian, di seluruh kawat, ia memiliki resistansi seragam.
Sekarang terminal potensiometer ini terhubung ke sel EMF V tinggi (mengabaikan resistansi internalnya) yang disebut sel driver atau sumber tegangan. Biarkan arus melalui potensiometer adalah I dan R adalah resistansi total potensiometer.
Kemudian oleh hukum Ohm V = IR
Karena ῥ dan A selalu konstan dan saat ini saya dijaga konstan oleh rheostat.
Jadi L ῥ / A = K (konstan)
Jadi, V = KL. Sekarang anggaplah sel E dari EMF yang lebih rendah dari sel driver ditempatkan di sirkuit seperti yang ditunjukkan di atas. Katakanlah ia memiliki EMF E. Sekarang di kawat potmeter katakan panjangnya x potensiometer telah menjadi E.
E = L ῥx / A = Kx
Ketika sel ini dimasukkan ke dalam sirkuit seperti yang ditunjukkan di atas dengan jokey yang terhubung ke panjang yang sesuai (x), tidak akan ada aliran arus melalui galvanometer karena ketika beda potensial sama dengan nol, tidak ada arus yang akan mengalir melaluinya.
Jadi galvanometer G menunjukkan deteksi nol. Maka panjang (x) disebut panjang dari titik nol. Sekarang dengan mengetahui konstanta K dan panjang x. Kami dapat menemukan EMF yang tidak diketahui.
E = L ῥx / A = Kx
Kedua, EMF dari dua sel juga dapat dibandingkan, biarkan sel pertama EMF E1 diberi titik nol pada panjang = L1 dan sel kedua EMF E2 menunjukkan titik nol panjang = L2
Kemudian, E1 / E2 = L1 / L2
- Siapkan semua bahan dan alat
- Hubungkan semua bahan dan alat
- Atur tegangan dan hambatan
- Jalankan simulasi
- Lalu mencoba menjalankan rangkaian
- Amatilah Respons Frekuensi dan juga respons gelombangnya pada osiloskop
Komentar
Posting Komentar